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ment of these multiple fragments. The A values 
associated with these triples may be obtained from 
the magnitude of EhEkE, computed by the chosen 
phase-invariant equation, where A = 
2tr3/tr3/2lEhEkEi] , tY n = ~ Z~, Zj is the atomic number 
of the j th  atom, and the summation is performed over 
the m x n atoms in the primitive unit cell. 384 out of 
the strongest 423 E 's  had determinable values of Oh 
for the 31-atom test case, and similarly 359 for the 
14-atom example. The accuracy of these initial values 
given as ( c o s ( 0 t r u e -  0calc)> was 0.988 and 0.419 respec- 
tively, that is average phase errors of 8-9 and 65 ° . Out 
of the initial set of 4930 triples with A > 1.0 that could 
be generated by the 423 E's,  the 31-atom example 
produced 3904 accessible triples for which 
(A COS(~tr~e--~calc))/(A) was 0-998 by (7) and 0.814 
by (3). The 14-atom example accessed 3539 triples 
for which the corresponding A weighted cosine 
averages were 0.851 and 0.801. If one considers those 
triples that have calculated A values greater than 1.0, 
there are 618 triples computed by (7) with an average 
cosine discrepancy of 0.933 and 151 triples by (3) 
with a corresponding value of 0.866. By contrast, 
there are only 25 unrestricted triples in the original 
list of 4930 that have A values large enough to warrant 
an expected cosine exceeding 0.900, and only one 
that exceeds 0.933. The average error in the estimated 
values of the phases of the crystal-structure invariants 
completed by (7) is about ten times better than that 
produced by (3) in the 31-atom example. Such 
accuracy is unprecedented for estimates of un- 
restricted cosine invariants and would appear to be 
more than adequate to guarantee a structural solution, 

since, for comparison, it is unlikely that any ab initio 
noncentrosymmetric direct-methods analysis has ever 
been performed that has had phase relationships 
approaching this precision. Attempts to improve this 
accuracy further by quadruple phase refinement (8) 
with tangent-formula procedures were surprisingly 
ineffective, in view of the fact that the errors in the 
estimates of the three-phase invariants were not 
expected to be interdependently related with those 
of other triples in a quadrupole relationship. 
Individual observations indicate that these four triple 
estimates do not precisely sum to zero, so that the 
ineffectiveness of this refinement must have some 
other explanation. 

The efforts extended by the referees in examining 
this work are gratefully appreciated. This work has 
been supported in part by NIH grant HL32303 from 
the National Heart, Lung and Blood Institute. 
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Abstract 

Correlation functions in reciprocal space are applied 
to 'problem' structures consisting of approximately 
planar molecules stacked in layers. The relative posi- 
tion of two molecular fragments is determined by a 
two-dimensional translation function. With three-or 
four-dimensional translation searches two indepen- 
dent fragments can be positioned relative to one 
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another and, simultaneously, relative to a symmetry 
element. 

Introduction 

Crystal structures consisting of approximately planar 
molecules can often be solved by Patterson methods 
as well as by direct methods. Sometimes direct 
methods are not successful, and experience has shown 
that failures more often occur when the planar 
molecules are stacked in parallel equidistant planes. 
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The planar molecules (or fragments) are easily 
recognized.  The problem in such cases is that the 
positions of the molecules cannot be determined 
unambiguously. 

Different molecules are usually related by space- 
group symmetry or by a local (pseudo) symmetry 
element and/or  by a translation. (We do not expect 
direct-methods problems when there are no system- 
atic relations between the molecules.) We can make 
use of this knowledge to find the positions of the 
molecules. In this note we show the use of Patterson- 
type translation functions in reciprocal space. 

Method 

The family of parallel equidistant planes in which 
the molecules are stacked is denoted by the indices 
(HKL). The family (HKL) is defined analogously to 
Laue indices. A vector t, parallel to (HKL), is given 
by 

t = qaa/H + qbb/K - ( qa + qb)C/L, ( 1 ) 

where only two independent variables, q~ and qb, 
define this three-dimensional vector. Equation (1) 
describes t for the general case; simplified expressions 
for t can be set up if any of the indices is zero (i.e. 
for a family of planes parallel to one or two unit-cell 
axes). 

The largest common divisor of H, K and L is 
denoted by m. When m = 1, the vector function 
t(qa, qb) spans all planes (HKL). For m > 1, vectors 
u may be added to reach other parallel planes. A 
vector u is a fixed interlayer vector; for instance, an 
integer multiple of a/H. 

Assume that we have found and identified (for 
instance, from a direct-methods E map) two 
molecular fragments, denoted px and p2. The frag- 
ments may be on the same plane or on neighbouring 
planes. Partial structure factors for reflections h, 
calculated from these fragments, are Fth and F2h, 
respectively. 

If Pl and /92 are symmetry related, then F2h is 
directly related to the calculated Fib values. Other- 
wise, no symmetry is used in the following argument. 

In the present notation pl is kept fixed, and p2 is 
allowed to shift on different planes of the family 
(HKL). Thus shift vectors t + u  are applied to frag- 
ment P2. The partial structure factor for the sum of 
the two fragments is 

Fph= Flh+ FEhexp[2,rrih(t+u)], (2) 

where t = t(q~, qb) is a two-dimensional variable, and 
u are m fixed vectors. Thus we can determine the 
position of/92 in three-dimensional space by at most 
m two-dimensional translation searches. 

As search function we use the correlation function 
(Tollin, 1966; Beurskens, 1981, and references 

Table 1. Crystal data of examples 

FOC1 LU17 

C17H16N202 CsHloN402 
Space group P1 P2x/ c 
a (A,) 8-0164 (5) 15.11 (1) 
b (/~) 10.6705 (8) 13.606 (3) 
c (~) 17.5227 (19) 19.877 (6) 
a (°) 77.08 (1) 90 
/3 (°) 101.24 (1) 111.92 (3) 
y (°) 99.28 (1) 90 
Z 4 16 
Reflections 4952 1671 
Final R 0.058 0.079 

References: FOCI:. Beurskens, Beurskens, Apreda, Foces-Foces, Cano & 
Garcia-Blanco (1984); LU17: Stalhandske, Bruins Slot & Beurskens (1985). 

therein) 
Q,,(t) = (IEh 2lEph(t+u) z)h, (3) 

where Eh is the observed normalized structure factor 
and [Eph[ is the normalized equivalent of (2); the 
average is taken over the reflections with lEvi greater 
than a threshold Emin. 

The function Qu(t) is easily programmed, and the 
result is plotted as a function of the parameters qa 
and qb. Maxima in this function correspond to prob- 
able positions of p2. 

Application 

The method allows the positioning of two planar 
fragments relative to one another. When the two 
fragments are symmetry related, the method is 
equivalent to a conventional translation search, 
except that for space group P1 a three-dimensional 
problem is now solved by a two-dimensional search. 
The resulting reduction of computer time involved 
allows the expansion of the method to include the 
simultaneous positioning of two fragments relative to 
one another and to symmetry-related fragments. 

Examples 

The present procedure was tested on a known struc- 
ture, code name FOC1, and was used to solve an 
unknown structure, code name LU17, see Table 1. 

The test structure FOC1 has molecules stacked on 
(024) planes. The molecules are nearly planar: ring 
D is not completely planar, but in a poorly phased 
E map this ring will show up as part of a planar ring 
system. 

M U L T A N  (Main et al., 1980) and some DIRDIF 
runs (Beurskens, Bosman, Doesburg, Gould, van den 
Hark, Prick, Noordik, Beurskens, Parthasarathi, 
Bruins Slot & Haltiwanger, 1984) led to the so-called 
chicken-wire pattern (Fig. 1). The structure was 
solved in several parallel DIRDIF runs by manually 
breaking the manyfold positional and rotational 
ambiguities. It was found that symmetry-independent 
molecules are rotated by a local rotation of 60 ° around 
an axis perpendicular to the molecular planes. 
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With the present procedure, this structure could be 
solved easily. One fragment, pl, is a planar fragment: 
rings A, B and C and the two oxygen atoms. The 
second fragment, p2, is the inverse of p~. The aim of 
this application is to determine the position of the 
center of symmetry by a two-dimensional search. The 
position of the center of symmetry is either on or 
between the (024) planes (i.e. n = 0 or n = b/2). There- 
fore, two parallel searches are needed. Structure fac- 
tors for fragment pl are calculated, while structure 
factors for fragment P2 are their complex conjugates. 

The highest maximum in one of the two Q,(t) maps 
appeared to be correct, and a single subsequent 
D I R D I F  run in space group P1 with the shifted 
fragment Pl as input revealed all non-H atoms of both 
independent molecules. 

The unknown structure, LU17, consists of 
molecules stacked on the (006) planes. Only four of 
the six (006) planes through the unit cell contain the 
enprofylline molecules; this, however, was not known 
at the outset of the present investigation. The 
molecules are planar with the exception of the n- 
propyl chains. 

From M U L T A N  E maps, as well as from D I R D I F  
Fourier maps based on the correct orientation of one 
enprofylline molecule, in which many well defined 
molecules could be recognized, the following prob- 
lems arose. Equally oriented symmetry-independent 
molecules were recognized in different layers, 
molecules in one layer were related to one another 
by a local rotation of 60 °, additional local symmetry 
elements were found, the center of symmetry could 
be either on or between the (006) planes and an 
unequal distribution of the sixteen molecules over 
the six planes in the unit cell was required. 

The present procedure was applied to solve the 
structure. The correct orientation of a rigid fragment 
from the literature (C5N402, Mercer & Trotter, 1978) 
was found with the orientation search program 
ORIENT, which is a part of the D I R D I F  system. 
This fragment, Pl, was fixed on one of the (006) 
planes. A second, equally oriented fragment, p2, was 
allowed to shift on an adjacent (006) plane and both 
fragments were positioned relative to the c-glide 
plane. Thus, a three-dimensional search, with two 
parameters for the positioning of p~ relative to O~ and 
one parameter for the positioning of the e-glide plane, 
was performed, in which four fragments contributed 
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Fig. 1. 'Chicken-wire' pattern of FOCI. 

to the calculation of Eph. The Q.(t) map did not show 
any outstanding peak, but a large number of tentative 
positions of pi and 02 relative to the c-glide plane 
was obtained. They were tested, subsequently, with 
D I R D I F  in space group Pc. The fourth peak yielded 
a Fourier map that revealed all non-H atoms and the 
space-group symmetry, P21/c, was confirmed by this 
solution. [In case of failure, we would have tried to 
position the second fragment on another (006) plane !] 

Discussion 

The two examples clearly show the advantages of 
reciprocal-space translation functions based on 
Patterson methods. Direct-methods approaches to 
solve structures consisting of approximately planar 
molecules stacked in layers sometimes fail because 
of the existence of positional (and sometimes also 
rotational) ambiguities. The expansion and 
refinement of phases by the tangent formula is 
strongly influenced by these ambiguities. It is not 
generally understood that this problem is related to 
failure of origin and/or enantiomorph fixation. The 
phases, calculated for a known fragment, may fix the 
origin and enantiomorph in the 'direct-methods' ter- 
minology but not in reality and tangent expansion 
will lead to multiple images. The present procedure 
to overcome these problems is intrinsically better 
because the correct positions of fragments are always 
present, although they might be hidden in a large 
number of possible peaks in the Q,,(t) map. When 
the present method finds the relative position of frag- 
ments, and if the resulting collection of fragments 
defines a unique part of the structure, the origin and 
enantiomorph ambiguities are solved. 

This work is supported by the Netherlands Founda- 
tion for Chemical Research (SON) with financial aid 
from the Netherlands Organization for the Advance- 
ment of Pure Research (ZWO). 
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